Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester

Final Examination Date: 5/12/08

Maximum marks: 100 Time: 3 hours

1. Consider the sequences $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$, $\{c_n\}_{n\geq 1}$ where

$$a_n = 1 + (-\frac{1}{5})^n$$
; $b_n = (-1)^n + \frac{2}{n}$; $c_n = \frac{6n+4}{7n-5}$.

Compute limit superior and limit inferior (as n tends to infinity) for these sequences. 15

- 2. Let $k:[0,1] \to \mathbb{R}$ be a continuous function. Suppose that k has local maximum at two distinct points x_1, x_2 in [0, 1]. Show that k has a local minimum at some point x_3 in [0,1]. [10]
- 3. Let $\{f_n\}_{n\geq 1}$ be a sequence of real valued continuous functions on [0, 1] converging pointwise to a continuous function $f:[0,1]\to\mathbb{R}$. Show that the convergence is uniform, if

$$f_n(x) \ge f_{n+1}(x) \quad \forall x \in [0,1],$$

for all $n \ge 1$. (Hint: Use compactness of [0, 1]).

[15] 4. Let D be a non-empty subset of \mathbb{R} and let $h:D\to\mathbb{R}$ be uniformly continuous. If

D is bounded show that h is bounded. Use this result to show that $g:(0,\infty)\to R$ defined by $g(x) = \frac{1}{x}$ is not uniformly continuous. [15]

5. Let $u:[0,1]\to \mathbb{R}$ be a continuous function. Define $v:[0,1]\to \mathbb{R}$ by

$$v(x) = \sup\{u(y) : 0 \le y \le x\}.$$

Show that v is a continuous function.

[15]

6. State and prove mean value theorem.

[15]

7. Show that every bounded sequence of complex numbers has a convergent subsequence.

|10|

8. Consider the series $\sum_{n>1} a_n$, where

$$a_n = \begin{cases} \frac{1}{n^2} & \text{if } n \text{ is odd;} \\ \\ \frac{1}{n^3} & \text{if } n \text{ is even.} \end{cases}$$

Show that this series is convergent but the convergence can not be determined by ratio test or root test. [15]